

Exam Questions 1Z0-071

Oracle Database 12c SQL

NEW QUESTION 1

In which normal form is a table, if it has no multi-valued attributes and no partial dependencies?

- A. second normal form
- B. first normal form
- C. third normal form
- D. fourth normal form

Answer: A

Explanation:

References:

https://blog.udemy.com/database-normal-forms/

NEW QUESTION 2

Which three statements are true regarding subqueries?

- A. Multiple columns or expressions can be compared between the main query and subquery.
- B. Subqueries can contain ORDER BY but not the GROUP BY clause.
- C. Main query and subquery can get data from different tables.
- D. Subqueries can contain GROUP BY and ORDER BY clauses.
- E. Main query and subquery must get data from the same tables.
- F. Only one column or expression can be compared between the main query and subquery.

Answer: ACD

Explanation:

References:

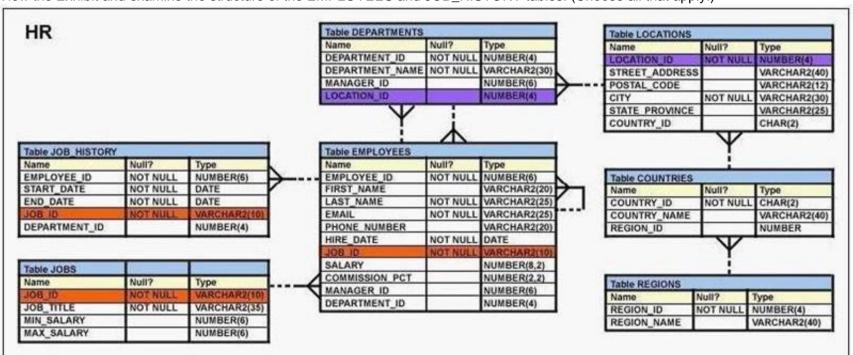
http://docs.oracle.com/javadb/10.6.2.1/ref/rrefsqlj13658.html

NEW QUESTION 3

You are designing the structure of a table in which two columns have the specifications:

COMPONENT_ID - must be able to contain a maximum of 12 alphanumeric characters and uniquely identify the row

EXECUTION_DATETIME – contains Century, Year, Month, Day, Hour, Minute, Second to the maximum precision and is used for calculations and comparisons between components.


Which two options define the data types that satisfy these requirements most efficiently?

- A. The EXECUTION_DATETIME must be of INTERVAL DAY TO SECOND data type.
- B. The EXECUTION_DATETIME must be of TIMESTAMP data type.
- C. The EXECUTION_DATETIME must be of DATE data type.
- D. The COMPONENT_ID must be of ROWID data type.
- E. The COMPONENT_ID must be of VARCHAR2 data type.
- F. The COMPONENT_ID column must be of CHAR data type.

Answer: CF

NEW QUESTION 4

View the Exhibit and examine the structure of the EMPLOYEES and JOB_HISTORY tables. (Choose all that apply.)

Examine this query which must select the employee IDs of all the employees who have held the job SA_MAN at any time during their employment. SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE JOB_ID = 'SA_MAN'

------; SELECT EMPLOYEE_ID FROM JOB_HISTORY WHERE JOB_ID = 'SA_MAN';

Choose two correct SET operators which would cause the query to return the desired result.

- A. UNION
- B. MINUS
- C. INTERSECT
- D. UNION ALL

Answer: AD

NEW QUESTION 5

Which two statements are true regarding the COUNT function?

- A. A SELECT statement using the COUNT function with a DISTINCT keyword cannot have a WHERE clause.
- B. COUNT (DISTINCT inv_amt) returns the number of rows excluding rows containing duplicates and NULL values in the INV_AMT column.
- C. COUNT (cust_id) returns the number of rows including rows with duplicate customer IDs and NULL value in the CUST_ID column.
- D. COUNT (*) returns the number of rows including duplicate rows and rows containing NULL value in any of the columns.
- E. The COUNT function can be used only for CHAR, VARCHAR2, and NUMBER data types.

Answer: BD

NEW QUESTION 6

Evaluate the following ALTER TABLE statement:

ALTER TABLE orders

SET UNUSED (order_date); Which statement is true?

- A. After executing the ALTER TABLE command, you can add a new column called ORDER_DATE to the ORDERS table.
- B. The ORDER_DATE column should be empty for the ALTER TABLE command to execute successfully.
- C. ROLLBACK can be used to get back the ORDER_DATE column in the ORDERS table.
- D. The DESCRIBE command would still display the ORDER_DATE column.

Answer: A

NEW QUESTION 7

View the Exhibit and examine the structure of the CUSTOMERS and CUST HISTORY tables.

CUSTOMERS Name	Null?	Туре
CUST_ID CUST_NAME CUST_ADDRESS CUST_CITY	NOT NULL	NUMBER (4) VARCHAR2 (20) VARCHAR2 (30) VARCHAR2 (20)
CUST_HISTORY Name	Null?	Туре
CUST_ID CUST_NAME CUST_CITY CHANGE_DATE	NOT NULL	NUMBER (4) VARCHAR2 (20) VARCHAR2 (20) DATE

The CUSTOMERS table contains the current location of all currently active customers.

The CUST_HISTORY table stores historical details relating to any changes in the location of all current as well as previous customers who are no longer active with the company.

You need to find those customers who have never changed their address. Which SET operator would you use to get the required output?

- A. INTERSECT
- **B. UNION ALL**
- C. MINUS
- D. UNION

Answer: C

NEW QUESTION 8

You want to display 5 percent of the rows from the SALES table for products with the lowest AMOUNT_SOLD and also want to include the rows that have the same AMOUNT SOLD even if this causes the output to exceed 5 percent of the rows. Which query will provide the required result?

- A. SELECT prod_id, cust_id, amount_soldFROM salesORDER BY amount_soldFETCH FIRST 5 PERCENT ROWS WITH TIES;
- B. SELECT prod_id, cust_id, amount_soldFROM salesORDER BY amount_soldFETCH FIRST 5 PERCENT ROWS ONLY WITH TIES;
- C. SELECT prod_id, cust_id, amount_soldFROM salesORDER BY amount_soldFETCH FIRST 5 PERCENT ROWS WITH TIES ONLY;
- D. SELECT prod_id, cust_id, amount_soldFROM salesORDER BY amount_soldFETCH FIRST 5 PERCENT ROWS ONLY;

Answer: A

NEW QUESTION 9

View the exhibit and examine the structure of the PROMOTIONS table.

Table PROMOTIONS			
Name	Null?	Туре	
PROMO_ID	NOT NULL	NUMBER(6)	
PROMO_NAME	NOT NULL	VARCHAR2(30)	
PROMO_SUBCATEGORY	NOT NULL	VARCHAR2(30)	
PROMO_SUBCATEGORY_ID	NOT NULL	NUMBER	
PROMO_CATEGORY	NOT NULL	VARCHAR2(30)	
PROMO_CATEGORY_ID	NOT NULL	NUMBER	
PROMO_COST	NOT NULL	NUMBER(10,2)	
PROMO_BEGIN_DATE	NOT NULL	DATE	
PROMO_END_DATE	NOT NULL	DATE	

You have to generate a report that displays the promo name and start date for all promos that started after the last promo in the 'INTERNET' category. Which query would give you the required output?

A. SELECT promo_name, promo_begin_date FROM promotionsWHERE promo_begin_date> ALL (SELECT MAX (promo_begin_date)FROM promotions) ANDpromo_category= 'INTERNET';

B. SELECT promo_name, promo_begin_date FROM promotionsWHERE promo_begin_date IN (SELECT promo_begin_dateFROM promotionsWHERE promo_category= 'INTERNET');

C. SELECT promo_name, promo_begin_date FROM promotionsWHERE promo_begin_date > ALL (SELECT promo_begin_dateFROM promotionsWHERE promo_category = 'INTERNET');

D. SELECT promo_name, promo_begin_date FROM promotionsWHERE promo_begin_date> ANY (SELECT promo_begin_dateFROM promotionsWHERE promo_category= 'INTERNET');

Answer: C

NEW QUESTION 10

Which two tasks can be performed by using Oracle SQL statements?

- A. changing the password for an existing database user
- B. connecting to a database instance
- C. querying data from tables across databases
- D. starting up a database instance
- E. executing operating system (OS) commands in a session

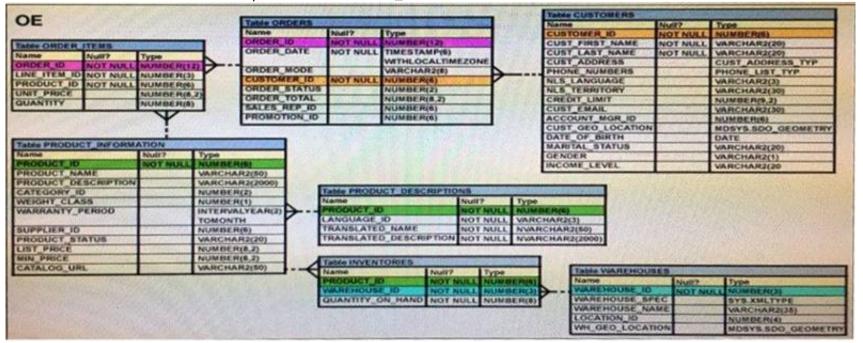
Answer: AC

Explanation: References:

http://www.techonthenet.com/oracle/password.php

https://docs.oracle.com/cd/B28359_01/server.111/b28324/tdpii_distdbs.htm

NEW QUESTION 10


You issued the following command: SQL> DROP TABLE employees; Which three statements are true?

- A. All uncommitted transactions are committed.
- B. All indexes and constraints defined on the table being dropped are also dropped.
- C. Sequences used in the employees table become invalid.
- D. The space used by the employees table is reclaimed immediately.
- E. The employees table can be recovered using the rollback command.
- F. The employees table is moved to the recycle bin

Answer: ABF

NEW QUESTION 14

View the exhibit and examine the description of the PRODUCT_INFORMATION table.

Which SQL statement would retrieve from the table the number of products having LIST PRICE as NULL?

A. SELECT COUNT (DISTINCT list_price)FROM product_informationWHERE list_price is NULL

- B. SELECT COUNT (NVL(list_price, 0))FROM product_informationWHERE list_price is NULL
- C. SELECT COUNT (list_price)FROM product_informationWHERE list_price i= NULL
- D. SELECT COUNT (list_price)FROM product_informationWHERE list_price is NULL

Answer: B

NEW QUESTION 15

On your Oracle 12c database, you invoked SQL *Loader to load data into the EMPLOYEES table in the HR schema by issuing the following command: \$> sqlldr hr/hr@pdb table=employees

Which two statements are true regarding the command?

- A. It succeeds with default settings if the EMPLOYEES table belonging to HR is already defined in the database.
- B. It fails because no SQL *Loader data file location is specified.
- C. It fails if the HR user does not have the CREATE ANY DIRECTORY privilege.
- D. It fails because no SQL *Loader control file location is specified.

Answer: AC

NEW QUESTION 19

Which two statements are true regarding savepoints? (Choose two.)

- A. Savepoints may be used to ROLLBACK.
- B. Savepoints can be used for only DML statements.
- C. Savepoints are effective only for COMMIT.
- D. Savepoints are effective for both COMMIT and ROLLBACK.
- E. Savepoints can be used for both DML and DDL statements.

Answer: AB

NEW QUESTION 24

Examine the structure of the EMPLOYEES table. NameNull?Type

------ EMPLOYEE_IDNOT NULLNUMBER(6) FIRST_NAMEVARCHAR2(20) LAST_NAMENOT NULLVARCHAR2(25) EMAILNOT NULLVARCHAR2(25) PHONE NUMBERVARCHAR2(20) HIRE_DATENOT NULLDATE JOB_IDNOT NULLVARCHAR2(10) SALARYNUMBER(8,2) COMMISSION_PCTNUMBER(2,2) MANAGER_IDNUMBER(6) DEPARTMENT_IDNUMBER(4)

There is a parent/child relationship between EMPLOYEE_ID and MANAGER_ID.

You want to display the last names and manager IDs of employees who work for the same manager as the employee whose EMPLOYEE_ID is 123. Which query provides the correct output?

A. SELECT e.last_name, m.manager_idFROM employees e RIGHT OUTER JOIN employees mon (e.manager_id = m.employee_id)AND e.employee_id = 123; B. SELECT e.last_name, m.manager_idFROM employees e RIGHT OUTER JOIN employees mon (e.employee_id = m.manager_id)WHERE e.employee_id = 123;

C. SELECT e.last_name, e.manager_idFROM employees e RIGHT OUTER JOIN employees mon (e.employee_id = m.employee_id)WHERE e.employee_id = 123;

D. SELECT m.last_name, e.manager_idFROM employees e LEFT OUTER JOIN employees mon (e.manager_id = m.manager_id)WHERE e.employee_id = 123;

Answer: B

NEW QUESTION 28

STATEVARCHAR2 (3)

Examine the structure of the MEMBERS table: NameNull?Type

------ MEMBER_IDNOT NULLVARCHAR2 (6)

FIRST_NAMEVARCHAR2 (50) LAST_NAMENOT NULLVARCHAR2 (50) ADDRESSVARCHAR2 (50) CITYVARCHAR2 (25)

You want to display details of all members who reside in states starting with the letter A followed by exactly one character.

Which SQL statement must you execute?

A. SELECT * FROM MEMBERS WHERE state LIKE '%A_*;

B. SELECT * FROM MEMBERS WHERE state LIKE 'A_*;

C. SELECT * FROM MEMBERS WHERE state LIKE 'A_%';

D. SELECT * FROM MEMBERS WHERE state LIKE 'A%';

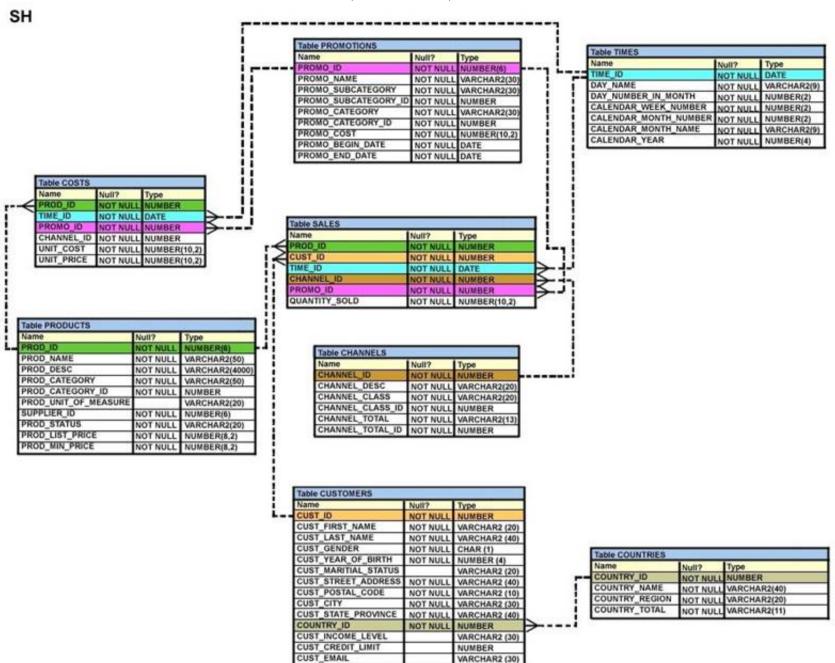
Answer: B

NEW QUESTION 31

Which statement is true about transactions?

- A. A set of Data Manipulation Language (DML) statements executed in a sequence ending with a SAVEPOINT forms a single transaction.
- B. Each Data Definition Language (DDL) statement executed forms a single transaction.
- C. A set of DDL statements executed in a sequence ending with a COMMIT forms a single transaction.
- D. A combination of DDL and DML statements executed in a sequence ending with a COMMIT forms a single transaction.

Answer: B


Explanation:

References:

https://docs.oracle.com/database/121/CNCPT/transact.htm#CNCPT038

NEW QUESTION 32

View the exhibit and examine the structure of the SALES, CUSTOMERS, PRODUCTS and TIMES tables.

The PROD_ID column is the foreign key in the SALES table referencing the PRODUCTS table.

The CUST_ID and TIME_ID columns are also foreign keys in the SALES table referencing the CUSTOMERS and TIMES tables, respectively. Examine this command:

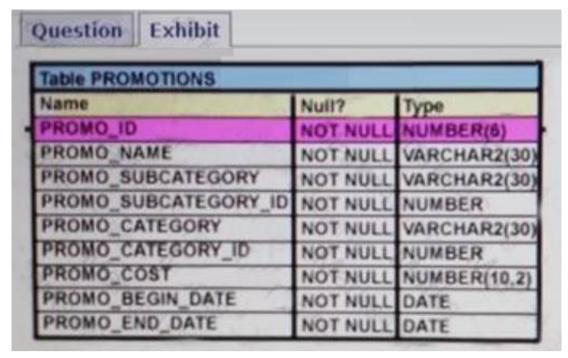
CREATE TABLE new_sales (prod_id, cust_id, order_date DEFAULT SYSDATE)

AS

SELECT prod_id, cust_id, time_id FROM sales;

Which statement is true?

A. The NEW_SALES table would get created and all the FOREIGN KEY constraints defined on the selected columns from the SALES table would be created on the corresponding columns in the NEW_SALES table.


- B. The NEW_SALES table would not get created because the column names in the CREATE TABLE command and the SELECT clause do not match.
- C. The NEW_SALES table would not get created because the DEFAULT value cannot be specified in the column definition.
- D. The NEW_SALES table would get created and all the NOT NULL constraints defined on the selected columns from the SALES table would be created on the corresponding columns in the NEW_SALES table.

Answer: D

NEW QUESTION 35

View the Exhibit and examine the structure of the PROMOTION table.

You have to generate a report that displays the promo named start data for all promos that started after that last promo in the 'INTTERNET' category.

A. Select promo_name, promo_being_date FROM promoptions WHERE promo_being_data > ANY (SELCT promo_being-date FROM promotionsWHERE promo_category = 'INTERNET'

B. SELECT promo_neme, promo_being_date FROM promotions WHERE promo_being_date > All (SELECT promo_beinjg-date FROM promotionsWHERE promo_category ='INTERNET');

C. SELECT promo-name, promo-being _date FROM promotionsWhere promo_being_data >ALL (SELECT MAX (promo_being-date) FROM promotions) ANDPromo-category ='INTERNET';

D. SELECT promo-name, promo-being_date FROM promotion WHERE promo-being-date IN (SELECT promo_biing_date FROM promotionsWHERE promo_category='INTYERNET');

Answer: B

NEW QUESTION 37

Examine the business rule:

Each student can work on multiple projects and each project can have multiple students.

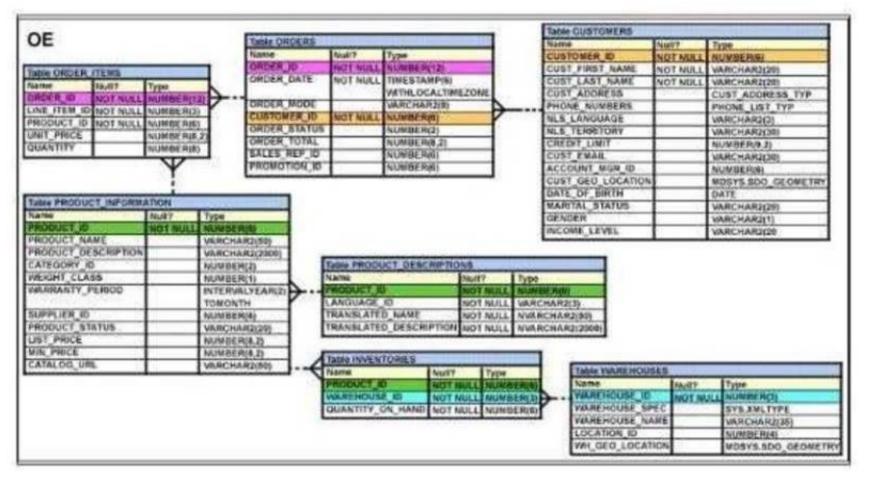
You need to design an Entity Relationship Model (ERD) for optimal data storage and allow for generating reports in this format:

STUDENT_ID FIRST_NAME LAST_NAME PROJECT_ID PROJECT_NAME PROJECT_TASK

Which two statements are true in this scenario?

- A. The ERD must have a 1:M relationship between the STUDENTS and PROJECTS entities.
- B. The ERD must have a M:M relationship between the STUDENTS and PROJECTS entities that must be resolved into 1:M relationships.
- C. STUDENT_ID must be the primary key in the STUDENTS entity and foreign key in the PROJECTS entity.
- D. PROJECT_ID must be the primary key in the PROJECTS entity and foreign key in the STUDENTS entity.
- E. An associative table must be created with a composite key of STUDENT_ID and PROJECT_ID, which is the foreign key linked to the STUDENTS and PROJECTS entities.

Answer: BE


Explanation:

References:

http://www.oracle.com/technetwork/issue-archive/2011/11-nov/o61sql-512018.html

NEW QUESTION 38

View the Exhibit and examine the structure of the PORDUCT_INFORMATION table. (Choose the best answer.)

PRODUCT_ID column is the primary key. You create an index using this command: SQL > CREATE INDEX upper_name_idx ON product_information(UPPER(product_name));

No other indexes exist on the PRODUCT_INFORMATION table. Which query would use the UPPER_NAME_IDX index?

- A. SELECT product_id, UPPER(product_name)FROM product_informationWHERE UPPER(product_name) = 'LASERPRO' OR list_price > 1000;
- B. SELECT UPPER(product_name)FROM product_information:
- C. SELECT UPPER(product_name)FROM product_informationWHERE product_id = 2254;
- D. SELECT product_idFROM product_informationWHERE UPPER(product_name) IN ('LASERPRO', 'CABLE');

Answer: D

NEW QUESTION 43

Examine the SQL statement used to create the TRANSACTION table. (Choose the best answer.)

SQL > CREATE TABLE transaction (trn_id char(2) primary key,

Start_date date DEFAULT SYSDATE, End_date date NOT NULL);

The value 'A1' does not exist for trn_id in this table.

Which SQL statement successfully inserts a row into the table with the default value for START_DATE?

- A. INSERT INTO transaction VALUES ('A1', DEFAULT, TO_DATE(DEFAULT+10))
- B. INSERT INTO transaction VALUES ('A1', DEFAULT, TO_DATE('SYSDATE+10'))
- C. INSERT INTO transaction (trn_id, end_date) VALUES ('A1', '10-DEC-2014')
- D. INSERT INTO transaction (trn_id, start_date, end_date) VALUES ('A1', , '10-DEC-2014')

Answer: C

NEW QUESTION 46

Which three statements are true regarding the SQL WHERE and HAVING clauses?

- A. The HAVING clause conditions can have aggregating functions.
- B. The HAVING clause conditions can use aliases for the columns.
- C. The WHERE and HAVING clauses cannot be used together in a SQL statement.
- D. The WHERE clause is used to exclude rows before grouping data.
- E. The HAVING clause is used to exclude one or more aggregated results after grouping data.

Answer: ADE

NEW QUESTION 51

Evaluate the following statement. INSERT ALL

WHEN order_total < 10000 THEN INTO small_orders

WHEN order_total > 10000 AND order_total < 20000 THEN INTO medium_orders

WHEN order_total > 200000 AND order_total < 20000 THEN INTO large_orders

SELECT order_id, order_total, customer_id FROM orders;

Which statement is true regarding the evaluation of rows returned by the subquery in the INSERT statement?

- A. They are evaluated by all the three WHEN clauses regardless of the results of the evaluation of any other WHEN clause.
- B. They are evaluated by the first WHEN claus
- C. If the condition is true, then the row would be evaluated by the subsequent WHEN clauses.
- D. They are evaluated by the first WHEN claus
- E. If the condition is false, then the row would be evaluated by the subsequent WHEN clauses.
- F. The insert statement would give an error because the ELSE clause is not present for support in case none of WHEN clauses are true.

Answer: A

Explanation:

References:

http://psoug.org/definition/WHEN.htm

NEW QUESTION 54

EMPLOYEES			
Name	Nul	1?	Туре
EMPLOYEE_ID	NOT	NULL	NUMBER(6)
FIRST_NAME			VARCHAR2(20)
LAST_NAME	NOT	NULL	VARCHAR2(25)
HIRE DATE		NULL	
JOB_ID	NOT	NULL	VARCHAR2(10)
SALARY			NUMBER(10,2)
COMMISSION			NUMBER(6,2)
MANAGER_ID			NUMBER(6)
DEPARTMENT_ID			NUMBER (4)
DEPARTMENTS			
Name.	Nu	112	Туре
DEPARTMENT_ID	NOT	NULL	NUMBER(4)
DEPARTMENT NAME	NOT	NULL	VARCHAR2(30)
MANAGER ID			NUMBER(6)
LOCATION_ID			NUMBER (4)

You must update the employees table according to these requirements::

- -Update only those employees who work in Boston or Seattle (locations 2900 and 2700).
- -Set department_id for these employees to the department id corresponding to London (locationid 2100).
- -Set the employees' salary in iocation_id 2100 to 1.1 times the average salary of their department.
- -Set the employees' commission In location_id 2100 to 1.5 times the average commission of their department. You issue this command:

```
SQL> UPDATE employees
     SET department id =
          (SELECT department id
           FROM departments
           WHERE location id = 2100),
        (salary, commission) =
          (SELECT 1.1*AVG(salary), 1.5*AVG(commission)
           FROM employees, departments
           WHERE departments.location id IN(2900,2700,2100))
     WHERE department_id IN
          (SELECT department_id
           FROM departments
           WHERE location_id = 2900
           OR location id = 2700);
```

What is the result?

- A. It executes successfully but does not produce the desired update.
- B. It executes successfully and produces the desired update.
- C. It generates an error because multiple columns cannot be specified together in an UPDATE statement.
- D. It generates an error because a subquery cannot have a join condition in an update statement.

Answer: A

NEW QUESTION 58

You execute the SQL statement: SQL> CREATE TABLE citizens

(citizen_id CHAR (10) PRIMARY KEY, last_name VARCHAR2 (50) NOT NULL, first_name VARCHAR2 (50), address VARCHAR2 (100),

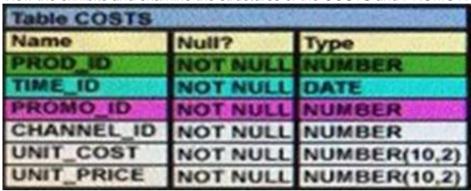
city VARCHAR2 (30) DEFAULT 'SEATTLE' NOT NULL,

CONSTRAINT cnames CHECK (first_name<>last_name)); What is the outcome?

- A. It fails because the NOT NULL and DEFAULT options cannot be combined for the same column.
- B. It succeeds and CITY can contain only 'SEATTLE' or null for all rows.
- C. It fails because the condition for the CANAMES constraint is not valid.
- D. It succeeds and an index is crated for CITIZEN_ID.

Answer: A

NEW QUESTION 63


When does a transaction complete? (Choose all that apply.)

- A. When a PL/SQL anonymous block is executed
- B. When a DELETE statement is executed
- C. When a data definition language statement is executed
- D. When a TRUNCATE statement is executed after the pending transaction
- E. When a ROLLBACK command is executed

Answer: CDE

NEW QUESTION 65

View the exhibits and examine the structures of the COSTS and PROMOTIONS tables.

Table PROMOTIONS			
Name	Null?	Туре	
PROMO_ID	NOT NULL	NUMBER(6)	
PROMO_NAME	NOT NULL	VARCHAR2(30)	
PROMO_SUBCATEGORY	NOT NULL	VARCHAR2(30)	
PROMO_SUBCATEGORY_ID	NOT NULL	NUMBER	
PROMO_CATEGORY	NOT NULL	VARCHAR2(30)	
PROMO_CATEGORY_ID	NOT NULL	NUMBER	
PROMO_COST	NOT NULL	NUMBER(10,2)	
PROMO_BEGIN_DATE	NOT NULL	DATE	
PROMO_END_DATE	NOT NULL	DATE	

Evaluate the following SQL statement: SQL> SELECT prod_id FROM costs

WHERE promo_id IN (SELECT promo_id FROM promotions WHERE promo_cost < ALL

(SELECT MAX(promo_cost) FROM promotions GROUP BY (promo_end_date- promo_begin_date)));

What would be the outcome of the above SQL statement?

- A. It displays prod IDs in the promo with the lowest cost.
- B. It displays prod IDs in the promos with the lowest cost in the same time interval.
- C. It displays prod IDs in the promos with the highest cost in the same time interval.
- D. It displays prod IDs in the promos which cost less than the highest cost in the same time interval.

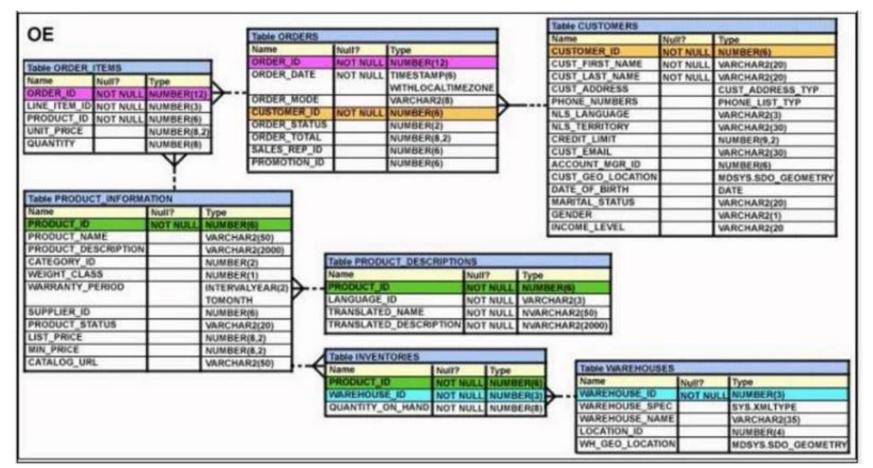
Answer: D

NEW QUESTION 67

Which statements are true? (Choose all that apply.)

- A. The data dictionary is created and maintained by the database administrator.
- B. The data dictionary views consists of joins of dictionary base tables and user-defined tables.
- C. The usernames of all the users including the database administrators are stored in the data dictionary.
- D. The USER_CONS_COLUMNS view should be queried to find the names of the columns to which a constraint applies.
- E. Both USER_OBJECTS and CAT views provide the same information about all the objects that are owned by the user.
- F. Views with the same name but different prefixes, such as DBA, ALL and USER, use the same base tables from the data dictionary.

Answer: CDF


Explanation:

References:

https://docs.oracle.com/cd/B10501_01/server.920/a96524/c05dicti.htm

NEW QUESTION 68

View the Exhibit and examine the details of the PRODUCT_INFORMATION table. (Choose two.)

Evaluate this SQL statement:

SELECT TO_CHAR (list_price, '\$9,999') From product_information;

Which two statements are true regarding the output?

- A. A row whose LIST_PRICE column contains value 11235.90 would be displayed as #######.
- B. A row whose LIST_PRICE column contains value 1123.90 would be displayed as \$1,123.
- C. A row whose LIST_PRICE column contains value 1123.90 would be displayed as \$1,124.
- D. A row whose LIST_PRICE column contains value 11235.90 would be displayed as \$1,123.

Answer: AC

NEW QUESTION 73

Which statement is true regarding the INTERSECT operator?

- A. The names of columns in all SELECT statements must be identical.
- B. It ignores NULL values.
- C. Reversing the order of the intersected tables alters the result.
- D. The number of columns and data types must be identical for all SELECT statements in the query.

Answer: D

Explanation:

INTERSECT Returns only the rows that occur in both queries' result sets, sorting them and removing duplicates.

The columns in the queries that make up a compound query can have different names, but the output result set will use the names of the columns in the first query.

References:

http://oraclexpert.com/using-the-set-operators/

NEW QUESTION 75

Which two statements are true regarding constraints?

- A. A table can have only one primary key and one foreign key.
- B. A table can have only one primary key but multiple foreign keys.
- C. Only the primary key can be defined at the column and table levels.
- D. The foreign key and parent table primary key must have the same name.
- E. Both primary key and foreign key constraints can be defined at both column and table levels.

Answer: BE

NEW QUESTION 76

Which task can be performed by using a single Data Manipulation Language (DML) statement?

- A. adding a column constraint when inserting a row into a table
- B. adding a column with a default value when inserting a row into a table
- C. removing all data only from one single column on which a unique constraint is defined
- D. removing all data only from one single column on which a primary key constraint is defined

Answer: C

NEW QUESTION 81

Which two partitioned table maintenance operations support asynchronous Global Index Maintenance in Oracle database 12c?

A. ALTER TABLE SPLIT PARTITION

B. ALTER TABLE MERGE PARTITION

C. ALTER TABLE TRUNCATE PARTITION

D. ALTER TABLE ADD PARTITION

E. ALTER TABLE DROP PARTITION

F. ALTER TABLE MOVE PARTITION

Answer: CE

NEW QUESTION 83

You must create a table EMPLOYEES in which the values in the columns EMPLOYEES_ID and LOGIN_ID must be unique and not null. (Choose two.) Which two SQL statements would create the required table?

A. CREATE TABLE employees(employee_id NUMBER,Login_id NUMBER,Employee_name VARCHAR2(100),Hire_date DATE,CONSTRAINT emp id ukUNIQUE (employee_id, login_id));

B. CREATE TABLE employees(employee_id NUMBER,login_id NUMBER,employee_name VARCHAR2(25),hire_date DATE,CONSTRAINT emp_id_pk PRIMARY KEY (employee_id, login_id));

C. CREATE TABLE employees(employee_id NUMBER CONSTRAINT emp_id_pk PRIMARY KEY, Login_id NUMBER UNIQUE, Employee_name VARCHAR2(25), Hire_date DATE);

D. CREATE TABLE employees(employee_id NUMBER,Login_id NUMBER,Employee_name VARCHAR2(100),Hire_date DATE,CONSTRAINT emp_id_uk UNIQUE (employee id, login id); CONSTRAINT emp id nn NOT NULL (employee id, login id));

E. CREATE TABLE employees(employee_id NUMBER CONSTRAINT emp_id_nn NOT NULL, Login_id NUMBER CONSTRAINT login_id_nn NOT NULL, Employee_name VARCHAR2(100), Hire_date DATE, CONSTRAINT emp_id_ukUNIQUE (employee_id, login_id));

Answer: BE

NEW QUESTION 88

View the exhibit and examine the structure of the STORES table. STORES table NameNull?Type

----- STORE_IDNUMBER NAMEVARCHAR2(100)

ADDRESSVARCHAR2(200) CITYVARCHAR2(100) COUNTRYVARCHAR2(100) START_DATEDATE END_DATEDATE PROPERTY_PRICENUMBER You want to display the NAME of the store along with the ADDRESS, START_DATE, PROPERTY_PRICE, and the projected property price, which is 115% of property price.

The stores displayed must have START_DATE in the range of 36 months starting from 01-Jan-2000 and above.

Which SQL statement would get the desired output?

A. SELECT name, concat (address| | ','| |city| |', ', country) AS full_address,start_date,property_price, property_price*115/100FROM storesWHERE MONTHS_BETWEEN (start_date, '01-JAN-2000')<=36;

B. SELECT name, concat (address | | ','| |city| |', ', country) AS full_address,start_date,property_price, property_price*115/100FROM storesWHERETO_NUMBER(start_date-TO_DATE('01-JAN-2000','DD-MON-RRRR')) <=36;

C. SELECT name, address||','||city||','||country AS full_address,start_date,property_price, property_price*115/100FROM storesWHERE MONTHS_BETWEEN (start_date, TO_DATE('01-JAN-2000','DD-MON-RRRR')) <=36;

D. SELECT name, concat (address||','| |city| |', ', country) AS full_address,start_date,property_price, property_price*115/100FROM storesWHERE MONTHS_BETWEEN (start_date, TO_DATE('01-JAN-2000','DD-MON-RRRR')) <=36;

Answer: D

NEW QUESTION 90

Which three statements are true about multiple-row subqueries?

- A. They can contain a subquery within a subquery.
- B. They can return multiple columns as well as rows.
- C. They cannot contain a subquery within a subquery.
- D. They can return only one column but multiple rows.
- E. They can contain group functions and GROUP BY and HAVING clauses.
- F. They can contain group functions and the GROUP BY clause, but not the HAVING clause.

Answer: ABE

NEW QUESTION 94

You need to produce a report where each customer's credit limit has been incremented by \$1000. In the output, the customer's last name should have the heading Name and the incremented credit limit should be labeled New Credit Limit. The column headings should have only the first letter of each word in uppercase.

Which statement would accomplish this requirement?

- A. SELECT cust_last_name AS "Name", cust_credit_limit + 1000AS "New Credit Limit"FROM customers;
- B. SELECT cust_last_name AS Name, cust_credit_limit + 1000AS New Credit LimitFROM customers;
- C. SELECT cust last name AS Name, cust credit limit + 1000"New Credit Limit"FROM customers;
- D. SELECT INITCAP (cust last name) "Name", cust credit limit + 1000INITCAP ("NEW CREDIT LIMIT")FROM customers;

Answer: A

NEW QUESTION 95

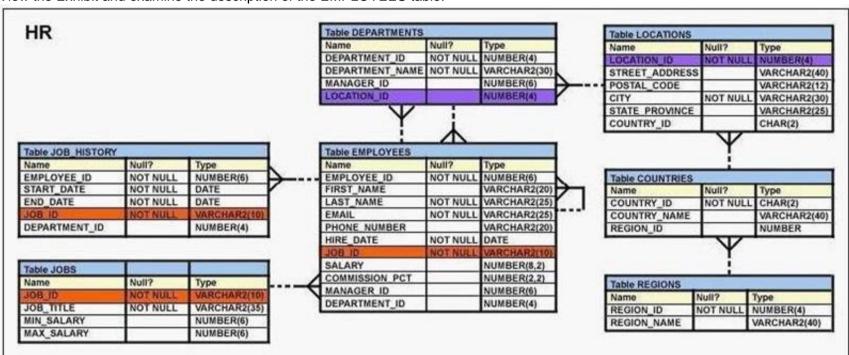
Which three statements are true regarding the usage of the WITH clause in complex correlated subqueries: (Choose three.)

- A. It can be used only with the SELECT clause.
- B. The WITH clause can hold more than one query.
- C. If the query block name and the table name are the same, then the table name takes precedence.

D. The guery name in the WITH clause is visible to other query blocks in the WITH clause as well as to the main query block

Answer: ABD

NEW QUESTION 98


A non-correlated subquery can be defined as . (Choose the best answer.)

- A. A set of one or more sequential queries in which generally the result of the inner query is used as the search value in the outer query.
- B. A set of sequential queries, all of which must return values from the same table.
- C. A set of sequential queries, all of which must always return a single value.
- D. A SELECT statement that can be embedded in a clause of another SELECT statement only.

Answer: A

NEW QUESTION 101

View the Exhibit and examine the description of the EMPLOYEES table.

You want to calculate the total renumeration for each employee. Total renumeration is the sum of the annual salary and the percentage commission earned for a year. Only a few employees earn commission.

Which SQL statement would you execute to get the desired output?

- A. SELECT first_name, salary, salary*12+(salary*NVL2 (commission_pct, salary,salary+commission_pct))"Total"FROM EMPLOYEES;
- B. SELECT first_name, salary, salary*12+salary*commission_pct "Total"FROM EMPLOYEES;
- C. SELECT first_name, salary (salary + NVL (commission_pct, 0)*salary)*12 "Total"FROM EMPLOYEES;
- D. SELECT first_name, salary*12 + NVL(salary,0)*commission_pct, "Total"FROM EMPLOYEES;

Answer: A

NEW QUESTION 105

Examine the structure of the ORDERS table: (Choose the best answer.)

NAME	NULL	TYPE
ORDER_ID	NOT NULL	NUMBER (12)
ORDER_DATE	NOT NULL	TIMESTAMP(6)
CUSTOMERS ID	NOT NULL	NUMBER(6)
ORDER STATUS		NUMBER(2)
ORDER_TOTAL		NUMBER(8, 2)

You want to find the total value of all the orders for each year and issue this command:

SQL> SELECT TO_CHAR(order_date, 'rr'), SUM(order_total) FROM orders GROUP BY TO_CHAR(order_date, 'yyyy');

Which statement is true regarding the result?

- A. It executes successfully but does not give the correct output.
- B. It executes successfully but gives the correct output.
- C. It returns an error because the TO_CHAR function is not valid.
- D. It return an error because the datatype conversion in the SELECT list does not match the data type conversion in the GROUP BY clause.

Answer: D

NEW QUESTION 109

View the Exhibit and examine the structure of the PRODUCTS table. (Choose the best answer.)

Name	Null?	Туре
PROD_ID	NOT NULL	NUMBER(6)
PROD_NAME	NOT NULL	VARCHAR2(50)
PROD_DESC	NOT NULL	VARCHAR2(4000
PROD_CATEGORY	NOT NULL	VARCHAR2(50)
PROD_CATEGORY_ID	NOT NULL	NUMBER
PROD_UNIT_OF_MEASURE		VARCHAR2(20)
SUPPLIER_ID	NOT NULL	NUMBER(6)
PROD_STATUS	NOT NULL	VARCHAR2(20)
PROD_LIST_PRICE	NOT NULL	NUMBER(8,2)
PROD_MIN_PRICE	NOT NULL	NUMBER(8,2)

You must display the category with the maximum number of items.

You issue this query:

SQL > SELECT COUNT(*), prod_category_id FROM products

GROUP BY prod_category_id

HAVING COUNT(*) = (SELECT MAX(COUNT(*)) FROM porducts);

What is the result?

- A. It generates an error because = is not valid and should be replaced by the IN operator.
- B. It executes successfully but does not give the correct output.
- C. It executes successfully and gives the correct output.
- D. It generate an error because the subquery does not have a GROUP BY clause.

Answer: D

NEW QUESTION 114

Examine the structure of the BOOKS_TRANSACTIONS table:

TRANSACTION_ID TRANSACTION_TYPE BORROWED_DATE DUE_DATE BOOK_ID MEMBER_ID	Null? NOT NUL	Type L VARCHAR2 (6) VARCHAR2 (3) DATE DATE VARCHAR2 (6) VARCHAR2 (6)
--	------------------	--

Examine the SQL statement:

SQL> SELECT * FROM books transactions WHERE borrowed_date<SYSDATE AND transaction_type='RM' OR MEMBER_ID IN ('A101', 'A102');

Which statement is true about the outcome?

- A. It displays details only for members who have borrowed before today with RM as TRANSACTION_TYPE.
- B. It displays details for members who have borrowed before today's date with either RM asTRANSACTION_TYPE or MEMBER_ID as A101 and A102.
- C. It displays details for only members A101and A102 who have borrowed before today with RM as TRANSACTION_TYPE.
- D. It displays details for members who have borrowed before today with RM as TRANSACTION_TYPE and the details for members A101 or A102.

Answer: A

NEW QUESTION 118

Examine the command:

SQL> ALTER TABLE books_transactions

ADD CONSTRAINT fk_book_id FOREIGN KEY (book_id) REFERENCES books (book_id) ON DELETE CASCADE; What does ON DELETE CASCADE imply?

- A. When the BOOKS table is dropped, the BOOK_TRANSACTIONS table is dropped.
- B. When the BOOKS table is dropped, all the rows in the BOOK_TRANSACTIONS table are deleted butthe table structure is retained.
- C. When a row in the BOOKS table is deleted, the rows in the BOOK_TRANSACTIONS table whose BOOK_ID matches that of the deleted row in the BOOKS table are also deleted.
- D. When a value in the BOOKS.BOOK_ID column is deleted, the corresponding value is updated in the BOOKS_TRANSACTIONS.BOOK_ID column.

Answer: C

NEW QUESTION 121

The user SCOTT who is the owner of ORDERS and ORDER_ITEMS tables issues the following GRANT command: GRANT ALL

ON orders, order_items TO PUBLIC;

What correction needs to be done to the above statement?

- A. PUBLIC should be replaced with specific usernames.
- B. ALL should be replaced with a list of specific privileges.
- C. WITH GRANT OPTION should be added to the statement.
- D. Separate GRANT statements are required for ORDERS and ORDER_ITEMS tables.

Answer: D

Explanation:

References:

http://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljgrant.html

NEW QUESTION 125

Examine the structure of the EMPLOYEES table. (Choose the best answer.) Name	Nul	1?	Type
EMPLOYEE_ID	NOT	NULL	NUMBER (6)
FIRST_NAME			VARCHAR2 (20)
LAST_NAME	NOT	NULL	VARCHAR2 (25)
EMAIL	NOT	NULL	VARCHAR2 (25)
PHONE_NUMBER			VARCHAR2 (20)
HIRE_DATE	NOT	NULL	DATE
JOB_ID	NOT	NULL	VARCHAR2 (10)
SALARY			NUMBER (8,2)
COMMISSION_PCT			NUMBER (2,2)
MANAGER_ID			NUMBER (6)
DEPARTMENT ID			NUMBER (4)

You must display the details of employees who have manager with MANAGER_ID 100, who were hired in the past 6 months and who have salaries greater than 10000.

A. SELECT last_name, hire_date, salaryFROM employeesWHERE salary > 10000UNION ALL SELECT last_name, hire_date, salaryFROM employeesWHERE manager_ID = (SELECT employee_id FROM employees WHERE employee_id = 100)INETRSECTSELECT last_name, hire_date, salaryFROM employees WHERE hire_date > SYSDATE- 180;

B. SELECT last_name, hire_date, salaryFROM employeesWHERE manager_id = (SELECT employee_id FROM employees WHERE employee_id = 100)UNION ALL(SELECT last_name, hire_date, salaryFROM employeesWHERE hire_date > SYSDATE -180INTERSECTSELECT last_name, hire_date, salaryFROM employeesWHERE salary > 10000);

C. SELECT last_name, hire_date, salaryFROM employeesWHERE manager_id = (SELECT employee_id FROM employees WHERE employee_id = '100')UNIONSELECT last_name, hire_date, salaryFROM employeesWHERE hire_date > SYSDATE -180INTERSECTSELECT last_name, hire_date, salaryFROM employeesWHERE salary > 10000;

D. (SELECT last_name, hire_date, salaryFROM employeesWHERE salary > 10000UNION ALLSELECT last_name, hire_date, salaryFROM employeesWHERE manager_ID = (SELECT employee_id FROM employees WHERE employee_id = 100))UNIONSELECT last_name, hire_date, salaryFROM employeesWHERE hire_date > SYSDATE -180;

Answer: C

NEW QUESTION 128

Which three statements are true regarding single-row functions? (Choose three.)

- A. The data type returned, can be different from the data type of the argument that is referenced.
- B. They can return multiple values of more than one data type.
- C. They can accept only one argument.
- D. They can be nested up to only two levels.
- E. They can be used in SELECT, WHERE, and ORDER BY clauses.
- F. They can accept column names, expressions, variable names, or a user-supplied constants as arguments.

Answer: AEF

NEW QUESTION 129

In which three situations does a transaction complete?

A. when a PL/SQL anonymous block is executed

B. when a DELETE statement is executed

C. when a ROLLBACK command is executed

D. when a data definition language (DDL) statement is executed

E. when a TRUNCATE statement is executed after the pending transaction

Answer: CDE

Explanation:

References:

https://docs.oracle.com/cd/B19306_01/server.102/b14220/transact.htm

NEW QUESTION 131

Which two statements are true about sequences created in a single instance database? (Choose two.)

- A. When the MAXVALUE limit for the sequence is reached, you can increase the MAXVALUE limit by using the ALTER SEQUENCE statement.
- B. DELETE <sequencename> would remove a sequence from the database.
- C. The numbers generated by a sequence can be used only for one table.
- D. CURRVAL is used to refer to the last sequence number that has been generated.

E. When a database instance shuts down abnormally, the sequence numbers that have been cached but not used would be available once again when the database instance is restarted.

Answer: AD

Explanation:

References:

http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_2012.htm#SQLRF00817 https://docs.oracle.com/cd/A84870_01/doc/server.816/a76989/ch26.htm

NEW QUESTION 132

View the Exhibit and examine the structure of the EMP table which is not partitioned and not an index-organized table. (Choose two.)

EMP		
Name	Null?	Type
EMPNO	NOT NULL	NUMBER (4)
FIRST_NAME		VARCHAR2 (20)
LAST_NAME		VARCHAR2
SALARY		NUMBER (10, 2)
DEPTNO		NUMBER (2)

Evaluate this SQL statement: ALTER TABLE emp

DROP COLUMN first_name; Which two statements are true?

A. The FIRST_NAME column can be dropped even if it is part of a composite PRIMARY KEY provided the CASCADE option is added to the SQL statement.

- B. The FIRST_NAME column would be dropped provided at least one column remains in the table.
- C. The FIRST_NAME column would be dropped provided it does not contain any data.
- D. The drop of the FIRST_NAME column can be rolled back provided the SET UNUSED option is added to the SQL statement.

Answer: B

NEW QUESTION 135

View the Exhibits and examine PRODUCTS and SALES tables. Exhibit 1

Table PRODUCTS			
Name	Null?	Type	
PROD_ID	NOT NULL	NUMBER (6)	
PROD_NAME	NOT NULL	VARCHAR2 (50)	
PROD_DESC	NOT NULL	VARCHAR2 (4000)	
PROD_CATEGORY	NOT NULL	VARCHAR2 (50)	
PROD_CATEGORY_ID	NOT NULL	NUMBER	
PROD_UNIT_OF_MEASURE	722.	VARCHAR2 (20)	
SUPPLIER_ID	NOT NULL	NUMBER (6)	
PROD_STATUS	NOT NULL	VARCHAR2 (20)	
PROD_LIST_PRICE	NOT NULL	NUMBER (8, 2)	
PROD_MIN_PRICE	NOT NULL	NUMBER (8, 2)	

Exhibit 2

Table SALES			
Name	Null?	Type	
PROD_ID	NOT NULL	NUMBER	
CUST_ID	NOT NULL	NUMBER	
TIME_ID	NOT NULL	DATE	
CHANNEL_ID	NOT NULL	NUMBER	
PROMO_ID	NOT NULL	NUMBER	
QUANTITY_SOLD	NOT NULL	NUMBER (10, 2)	

You issue the following query to display product name the number of times the product has been sold:

SOL>SELECT p.prod_name, i.item_cnt
FROM (SELECT prod_id, COUNT(*) item_cnt
FROM sales
GROUP BY prod_id) I RIGHT OUTER JOIN products p
ON i.prod_id = p.prod_id;

What happens when the above statement is executed?

- A. The statement executes successfully and produces the required output.
- B. The statement produces an error because a subquery in the FROM clause and outer-joins cannot be used together.
- C. The statement produces an error because the GROUP BY clause cannot be used in a subquery in the FROM clause.
- D. The statement produces an error because ITEM_CNT cannot be displayed in the outer query.

Answer: A

NEW QUESTION 138

Which statement is true about an inner join specified in the WHERE clause of a query?

- A. It must have primary-key and foreign-key constraints defined on the columns used in the join condition.
- B. It requires the column names to be the same in all tables used for the join conditions.
- C. It is applicable for equijoin and nonequijoin conditions.
- D. It is applicable for only equijoin conditions.

Answer: C

NEW QUESTION 140

Examine the structure of the PROMOTIONS table: (Choose the best answer.)

NAME	NULL?	TYPE
PROMO_ID	NOT NULL	NUMBER(6)
PROMO_NAME	NOT NULL	VARCHAR2(30)
PROMO_CATEGORY	NOT NULL	VARCHAR2(30)
PROMO_COST	NOT NULL	NUMBER(10,2)

Management requires a report of unique promotion costs in each promotion category. Which query would satisfy this requirement?

- A. SELECT DISTINCT promo_category, promo_cost FROM promotions ORDER BY 1
- B. SELECT promo_category, DISTINCT promo_cost FROM promotions
- C. SELECT DISTINCT promo_cost, promo_category FROM promotions
- D. SELECT DISTINCT promo_cost, DISTINCT promo_category FROM promotions;

Answer: A

NEW QUESTION 143

Examine these SQL statements that are executed in the given order:

CREATE TABLE emp

(emp_no NUMBER (2) CONSTRAINT emp_emp_no_pk PRIMARY KEY, ename VARCHAR 2 (15), salary NUMBER (8, 2),

mgr_no NUMBER(2) CONSTRAINT emp_mgr_fk REFERENCES emp (emp_no)); ALTER TABLE emp

DISABLE CONSTRAINT emp_emp_no_pk CASCADE; ALTER TABLE emp

ENABLE CONSTRAINT emp_emp_no_pk;

What will be the status of the foreign key EMP_MGR_FK?

- A. It will be enabled and immediate.
- B. It will be enabled and deferred.
- C. It will remain disabled and can be re-enabled manually.
- D. It will remain disabled and can be enabled only by dropping the foreign key constraint and re-creating it.

Answer: C

NEW QUESTION 147

View the exhibit and examine the data in the PROJ_TASK_DETAILS table. (Choose the best answer.)

PROJ_TASK_DETAILS

TASK_ID	BASED_ON	TASK_IN_CHARGE	TASK_START_DATE	TASK_END_DATE
P01		KING	10-SEPT-07	12-SEPT-07
P02	P01	KOCHAR	13-SEPT-07	14-SEPT-07
P03		GREEN	14-SEPT-07	18-SEPT-07
P04	P03	SCOTT	19-SEPT-07	20-SEPT-07

The PROJ_TASK_DETAILS table stores information about project tasks and the relation between them. The BASED_ON column indicates dependencies between tasks

Some tasks do not depend on the completion of other tasks.

You must generate a report listing all task IDs, the task ID of any task upon which it depends and the name of the employee in charge of the task upon which it depends.

Which query would give the required result?

A. SELECT p.task_id, p.based_on, d.task_in_chargeFROM proj_task_details p JOIN proj_task_details dON (p.task_id = d.task_id);

- B. SELECT p.task_id, p.based_on, d.task_in_chargeFROM proj_task_details p FULL OUTER JOIN proj_task_details dON (p.based_on = d.task_id);
- C. SELECT p.task_id, p.based_on, d.task_in_chargeFROM proj_task_details p JOIN proj_task_details dON (p.based_on = d.task_id);
- D. SELECT p.task_id, p.based_on, d.task_in_chargeFROM proj_task_details p LEFT OUTER JOIN proj_task_details dON (p.based_on = d.task_id);

Answer: D

NEW QUESTION 150

View the exhibit and examine the structures of the EMPLOYEES and DEPARTMENTS tables. EMPLOYEES NameNull?Type

------- ------ EMPLOYEE_IDNOT NULLNUMBER(6) FIRST_NAMEVARCHAR2(20) LAST_NAMENOT NULLVARCHAR2(25) HIRE_DATENOT NULLDATE JOB IDNOT NULLVARCHAR2(10) SALARYNUMBER(10,2) COMMISSIONNUMBER(6,2) MANAGER IDNUMBER(6)

DEPARTMENT_IDNUMBER(4) DEPARTMENTS

NameNull?Type

DEPARTMENT_IDNOT NULLNUMBER(4) DEPARTMENT_NAMENOT NULLVARCHAR2(30) MANAGER_IDNUMBER(6) LOCATION_IDNUMBER(4)

You want to update EMPLOYEES table as follows: You issue the following command:

SQL> UPDATE employees SET department_id = (SELECT department_id FROM departments

WHERE location_id = 2100), (salary, commission) =

(SELECT 1.1*AVG(salary), 1.5*AVG(commission) FROM employees, departments

WHERE departments.location_id IN(2900, 2700, 2100))

WHERE department_id IN (SELECT department_id FROM departments WHERE location_id = 2900 OR location_id = 2700; What is outcome?

- A. It generates an error because multiple columns (SALARY, COMMISSION) cannot be specified together in an UPDATE statement.
- B. It generates an error because a subquery cannot have a join condition in a UPDATE statement.
- C. It executes successfully and gives the desired update
- D. It executes successfully but does not give the desired update

Answer: D

NEW QUESTION 151

Examine the commands used to create DEPARTMENT_DETAILS and COURSE_DETAILS:

SQL>CREATE TABLE DEPARTMENT_DETAILS
(DEPARTMENT_ID NUMBER PRIMARY KEY,
DEPARTMENT_NAME VARCHAR2(50),
HOD VARCHAR2(50));

SQL>CREATE TABLE COURSE_DETAILS

(COURSE ID NUMBER PRIMARY KEY,

COURSE NAME VARCHAR2 (50),

DEPARTMENT ID NUMBER REFERENCES DEPARTMENT DETAILS

(DEPARTMENT ID));

You want to generate a report that shows all course IDs irrespective of whether they have corresponding department IDs or not but no department IDs if they do not have any courses.

Which SQL statement must you use?

- A. SELECT course_id, department_id, FROM department_details d RIGHT OUTER JOIN course_details c USING (department_id)
- B. SELECT c.course_id, d.department_id FROM course_details c RIGHT OUTER JOIN.department_details d ON (c.department_id=d.department_id)
- C. SELECT c.course_id, d.department_id FROM course_details c FULL OUTER JOIN department_details d ON (c.department_id=
- D. department_id)
- E. SELECT c.course_id, d.department_id FROM course_details c FULL OUTER JOIN department_details d ON (c.department_id<>
- F. department_id)

Answer: C

NEW QUESTION 154

Examine the structure of the SALES table. (Choose two.)

NAME	NULL?	TYPE
PRODUCT_ID	NOT NULL	NUMBER(10)
CUSTOMER_ID	NOT NULL	VARCHAR2(10)
TIME_ID	NOT NULL	DATE
CHANNEL_ID	NOT NULL	NUMBER(5)
PROMO_ID	NOT NULL	NUMBER(5)
QUANTITY_SOLD	NOT NULL	NUMBER(10, 2)
PRICE		NUMBER(10, 2)
AMOUNT_SOLD	NOT NULL	NUMBER(10, 2)

Examine this statement:

SQL > CREATE TABLE sales1 (prod_id, cust_id, quantity_sold, price) AS

SELECT product_id, customer_id, quantity_sold, price FROM sales

WHERE 1 = 2;

Which two statements are true about the SALES1 table?

- A. It will not be created because the column-specified names in the SELECT and CREATE TABLE clauses do not match.
- B. It will have NOT NULL constraints on the selected columns which had those constraints in the SALES table.
- C. It will not be created because of the invalid WHERE clause.
- D. It is created with no rows.
- E. It has PRIMARY KEY and UNIQUE constraints on the selected columns which had those constraints in the SALES table.

Answer: BD

NEW QUESTION 158

View the Exhibit and examine the structure of the ORDER_ITEMS table. (Choose the best answer.)

ORDER_ID	LINE_ITEM_ID	PRODUCT_ID	UNIT_PRICE	QUANTITY
2355	4	2322	19	188
2355	5	2323	17	190
2355	9	2359	226.6	204
2355	1	2289	46	200
2356	5	2308	58	47
2356	6	2311	95	51
2356	1	2264	199.1	38
2356	2	2274	148.5	34
2356	3	2293	98	40
2356	4	2299	72	4.4
2357	2	2245	462	26
2357	3	2252	788.7	26
2357	4	2257	371.8	29
2357	5	2262	95	29

You must select the ORDER_ID of the order that has the highest total value among all the orders in the ORDER_ITEMS table. Which query would produce the desired result?

A. SELECT order_idFROM order_itemsGROUP BY order_idHAVING SUM(unit_price*quantity) = (SELECT MAX (SUM(unit_price*quantity))FROM order_items GROUP BY order_id);

- B. SELECT order_idFROM order_itemsWHERE(unit_price*quantity) = (SELECT MAX (SUM(unit_price*quantity)FROM order_items) GROUP BY order_id);
- C. SELECT order_idFROM order_itemsWHERE(unit_price*quantity) = MAX(unit_price*quantity)GROUP BY order_id);
- D. SELECT order_idFROM order_itemsWHERE (unit_price*quantity) = (SELECT MAX(unit_price*quantity)FROM order_itemsGROUP BY order_id)

Answer: A

NEW QUESTION 161

Evaluate the following CREATE TABLE command:

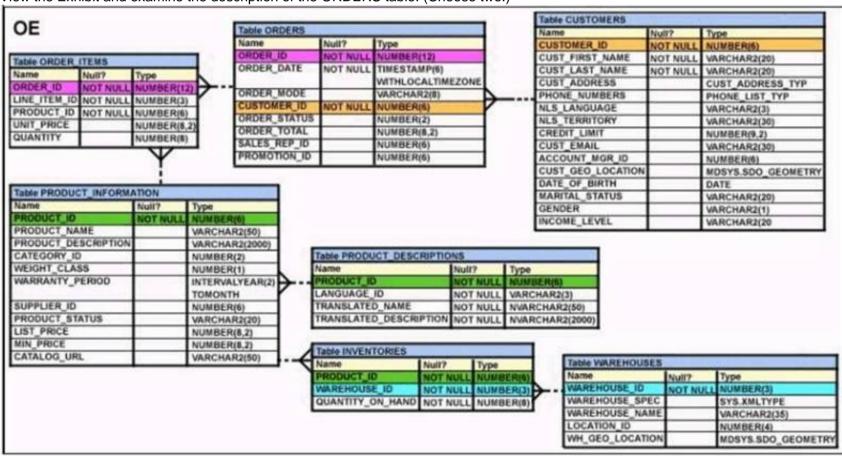
CREATE TABLE order_item
(order_id NUMBER (3),
item-id NUMBER (2),
qty NUMBER (4),
CONSTRAINT ord_itm_id_pk
PRIMARY KEY (order_id, item_id)
USING INDEX
(CREATE INDEX ord_itm_idx
ON order_item (order_id, item_id));

Which statement is true regarding the above SQL statement?

- A. It would execute successfully and only ORD_ITM_IDX index would be created.
- B. It would give an error because the USING INDEX clause cannot be used on a composite primary.
- C. It would execute successfully and two indexes ORD_ITM_IDX and ORD_ITM_ID PK would be created.
- D. It would give an error because the USING INDEX is not permitted in the CRETAE TABLE command.

Answer: A

NEW QUESTION 164


Which statement is true regarding the default behaviour of the ORDER by clause?

- A. Numeric values are displayed in descending order if they have decimal positions.
- B. Only columns that are specified in the SELECT list can be used in the ORDER by clause.
- C. In a character sort, the values are case-sensitive.
- D. NULLs are not including in the sort operation

Answer: C

NEW QUESTION 165

View the Exhibit and examine the description of the ORDERS table. (Choose two.)

Which two WHERE clause conditions demonstrate the correct usage of conversion functions?

- A. WHERE Order_date_IN (TO_DATE('OCT 21 2003', 'MON DD YYYY'), TO_CHAR('NOV 21 2003', 'MON DD YYYY'))
- B. WHERE Order_date > TO_CHAR(ADD_MONTHS(SYSDATE, 6), 'MON DD YYYY')
- C. WHERE TO_CHAR(Order_date, 'MON DD YYYY') = 'JAN 20 2003'
- D. WHERE Order_date > (TO_DATE('JUL 10 2006', 'MON DD YYYY')

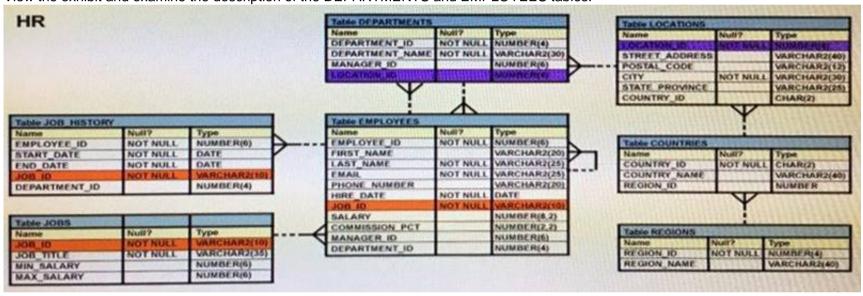
Answer: CD

NEW QUESTION 170

Examine the structure of the CUSTOMERS table: (Choose two.)

NAME	NULL?	TYPE
CUSTNO	NOT NULL	NUMBER(3)
CUSTNAME	NOT NULL	VARCHAR2(25)
CUSTADDRESS		VARCHAR2(35)
CUST_CREDIT_LIMIT		NUMBER(5)

CUSTNO is the PRIMARY KEY.


You must determine if any customers' details have been entered more than once using a different CUSTNO, by listing all duplicate names. Which two methods can you use to get the required result?

- A. Subquery
- B. Self-join
- C. Full outer-join with self-join
- D. Left outer-join with self-join
- E. Right outer-join with self-join

Answer: AB

NEW QUESTION 172

View the exhibit and examine the description of the DEPARTMENTS and EMPLOYEES tables.

The retrieve data for all the employees for their EMPLOYEE_ID, FIRST_NAME, and DEPARTMENT NAME, the following SQL statement was written: SELECT employee_id, first_name, department_name FROM employees

NATURAL JOIN departments;

The desired output is not obtained after executing the above SQL statement. What could be the reason for this?

- A. The table prefix is missing for the column names in the SELECT clause.
- B. The NATURAL JOIN clause is missing the USING clause.
- C. The DEPARTMENTS table is not used before the EMPLOYEES table in the FROM clause.
- D. The EMPLOYEES and DEPARTMENTS tables have more than one column with the same column name and data type.

Answer: D

Explanation:

Natural join needs only one column to be the same in each table. The EMPLOYEES and DEPARTMENTS tables have two columns that are the same (Department_ID and Manager_ID)

NEW QUESTION 175

The BOOKS_TRANSACTIONS table exists in your database. SQL>SELECT * FROM books_transactions ORDER BY 3; What is the outcome on execution?

- A. The execution fails unless the numeral 3 in the ORDER BY clause is replaced by a column name.
- B. Rows are displayed in the order that they are stored in the table only for the three rows with the lowest values in the key column.
- C. Rows are displayed in the order that they are stored in the table only for the first three rows.
- D. Rows are displayed sorted in ascending order of the values in the third column in the table.

Answer: D

NEW QUESTION 176

Which three statements are true about the ALTER TABLE....DROP COLUMN.... command?

- A. A column can be dropped only if it does not contain any data.
- B. A column can be dropped only if another column exists in the table.
- C. A dropped column can be rolled back.
- D. The column in a composite PRIMARY KEY with the CASCADE option can be dropped.
- E. A parent key column in the table cannot be dropped.

Answer: BDE

NEW QUESTION 180

View the exhibit and examine the data in ORDERS MASTER and MONTHLY ORDERS tables.

ORDERS_MASTER ORDER_ID ORDER_TOTAL

1000

2

2000

3

3000

MONTHLY_ORDERS ORDER_ID ORDER_TOTAL

2500

Evaluate the following MERGE statement: MERGE_INTO orders_master o

USING monthly_orders m ON (o.order_id = m.order_id) WHEN MATCHED THEN

UPDATE SET o.order_total = m.order_total DELETE WHERE (m.order_total IS NULL) WHEN NOT MATCHED THEN

INSERT VALUES (m.order id, m.order total)

What would be the outcome of the above statement?

A. The ORDERS_MASTER table would contain the ORDER_IDs 1, 2, 3 and 4.

- B. The ORDERS_MASTER table would contain the ORDER_IDs 1, 2 and 4.
- C. The ORDERS_MASTER table would contain the ORDER_IDs 1, 2 and 3.
- D. The ORDERS_MASTER table would contain the ORDER_IDs 1 and 2.

Answer: B

Explanation:

References:

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_9016.htm

NEW QUESTION 185

Which statement is true regarding external tables?

- A. The CREATE TABLE AS SELECT statement can be used to upload data into regular table in the database from an external table.
- B. The data and metadata for an external table are stored outside the database.
- C. The default REJECT LIMIT for external tables is UNLIMITED.
- D. ORACLE_LOADER and ORACLE_DATAPUMP have exactly the same functionality when used with an external table.

Answer: A

Explanation:

References:

https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables013.htm

NEW QUESTION 190

Which three statements are true regarding the WHERE and HAVING clauses in a SQL statement? (Choose three.)

- A. WHERE and HAVING clauses cannot be used together in a SQL statement.
- B. The HAVING clause conditions can have aggregate functions.
- C. The HAVING clause conditions can use aliases for the columns.
- D. The WHERE clause is used to exclude rows before the grouping of data.
- E. The HAVING clause is used to exclude one or more aggregated results after grouping data.

Answer: ABD

NEW QUESTION 191

Which two statements are true regarding roles? (Choose two.)

- A. A role can be granted to itself.
- B. A role can be granted to PUBLIC.
- C. A user can be granted only one role at any point of time.
- D. The REVOKE command can be used to remove privileges but not roles from other users.
- E. Roles are named groups of related privileges that can be granted to users or other roles.

Answer: BE

Explanation:

References:

http://docs.oracle.com/cd/E25054_01/network.1111/e16543/authorization.htm#autoId28

NEW QUESTION 192

Examine the structure of the BOOKS_TRANSACTIONS table:

_		ì
	CertShared	١
	CCI COITAI CC	۱

Name	Null?	Туре	
TRANSACTION_ID	NOT NULL	VARCHAR2 (6)
BORROWED_DATE		DATE	
DUE_DATE		DATE	
BOOK_ID		VARCHAR2 (6)
MEMBER ID		VARCHAR2 (6)

You want to display the member IDs, due date, and late fee as \$2 for all transactions. Which SQL statement must you execute?

- A. SELECT member_id AS MEMBER_ID, due_date AS DUE_DATE, \$2 AS LATE_FEE FROM BOOKS_TRANSACTIONS;
- B. SELECT member_id 'MEMBER ID', due_date 'DUE DATE', '\$2 AS LATE FEE' FROM BOOKS_TRANSACTIONS;
- C. SELECT member_id AS "MEMBER ID", due_date AS "DUE DATE", '\$2' AS "LATE FEE" FROM BOOKS_TRANSACTIONS;
- D. SELECT member_id AS "MEMBER ID", due_date AS "DUE DATE", \$2 AS "LATE FEE" FROM BOOKS_TRANSACTIONS;

Answer: C

NEW QUESTION 193

Evaluate the following two queries: SQL> SELECT cust_last_name, cust_city FROM customers WHERE cust_credit_limit IN (1000, 2000, 3000); SQL> SELECT cust_last_name, cust_city FROM customers

WHERE cust_credit_limit = 1000 or cust_credit_limit = 2000 or cust_credit_limit = 3000 Which statement is true regarding the above two queries?

- A. Performance would improve in query 2 only if there are null values in the CUST_CREDIT_LIMIT column.
- B. There would be no change in performance.
- C. Performance would degrade in query 2.
- D. Performance would improve in query 2.

Answer: B

Explanation:

References:

http://oraclexpert.com/restricting-and-sorting-data/

NEW QUESTION 198

Thank You for Trying Our Product

We offer two products:

1st - We have Practice Tests Software with Actual Exam Questions

2nd - Questons and Answers in PDF Format

1Z0-071 Practice Exam Features:

- * 1Z0-071 Questions and Answers Updated Frequently
- * 1Z0-071 Practice Questions Verified by Expert Senior Certified Staff
- * 1Z0-071 Most Realistic Questions that Guarantee you a Pass on Your FirstTry
- * 1Z0-071 Practice Test Questions in Multiple Choice Formats and Updatesfor 1 Year

100% Actual & Verified — Instant Download, Please Click Order The 1Z0-071 Practice Test Here